Pythonではじめるベイズ機械学習入門

パイソンデハジメルベイズキカイガクシュウニュウモン
  • 電子あり
Pythonではじめるベイズ機械学習入門
自分メモ
気になった本やコミックの情報を自分に送れます

内容紹介

+ もっとみる

目次

第1章 ベイジアンモデリングとは
1.1 データ解析とコンピュータ
1.2 ベイジアンモデリングの基礎
1.3 代表的な確率分布
1.4 近似推論手法

第2章 確率的プログラミング言語(PPL)
2.1 ベイジアンモデリングとPPL
2.2 自動微分・最適化アルゴリズム
2.3 PyMC3の概要
2.4 Pyroの概要
2.5 NumPyroの概要
2.6 TensorFlow Probabilityの概要
2.7 GPyTorchの概要

第3章 回帰モデル
3.1 線形回帰モデル:線形単回帰モデル
3.2 線形回帰モデル:線形重回帰モデル
3.3 一般化線形モデル:ポアソン回帰モデル
3.4 一般化線形モデル:ロジスティック回帰モデル
3.5 階層ベイズモデル
3.6 ガウス過程回帰モデル:ガウス尤度
3.7 ガウス過程回帰モデル:尤度の一般化

第4章 潜在変数モデル
4.1 混合ガウスモデル
4.2 行列分解モデル
4.3 状態空間モデル
4.4 隠れマルコフモデル
4.5 トピックモデル
4.6 ガウス過程潜在変数モデル

第5章 深層学習モデル
5.1 ニューラルネットワーク回帰モデル
5.2 変分自己符号化器
5.3 PixelCNN
5.4 深層ガウス過程
5.5 正規化流

製品情報

製品名 Pythonではじめるベイズ機械学習入門
著者名 著:森賀 新 著:木田 悠歩 著:須山 敦志
発売日 2022年05月26日
価格 定価:3,080円(本体2,800円)
ISBN 978-4-06-527978-6
判型 B5変型
ページ数 272ページ

著者紹介

著:森賀 新(モリガ シン)

現 在 アクセンチュア株式会社ビジネスコンサルティング本部所属

著:木田 悠歩(キダ ユウホ)

現 在 アクセンチュア株式会社ビジネスコンサルティング本部所属

著:須山 敦志(スヤマ アツシ)

現 在 アクセンチュア株式会社ビジネスコンサルティング本部所属
講演会やSNS、ブログなどを通して人工知能やデータサイエンスの理論、実応用に関する情報を発信中。
著書に、『ベイズ推論による機械学習入門』『ベイズ深層学習』『Juliaで作って学ぶベイズ統計学』(いずれも講談社)がある。

オンライン書店で見る