モンテカルロ統計計算
- 電子あり
内容紹介
目次
第1章 序論
1.1 確率と条件つき確率
1.1.1 分割表
1.1.2 スパムメールフィルタ
1.1.3 ベイズの公式の一般化
1.1.4 R 言語について
1.2 個人確率とベイズ統計学
1.2.1 事後分布
1.2.2 正規モデルの事後分布
1.2.3 ポアソン・ガンマモデルの事後分布
1.2.4 多変数の事後分布
1.3 ベイズ統計学の基本
1.3.1 信用集合
1.3.2 事後予測
1.3.3 客観的ベイズ統計学
1.4 モデル事後確率
1.4.1 モデル事後確率
1.4.2 ベイズ因子
1.5 線形回帰モデル
第2章 乱数
2.1 一様乱数
2.2 逆変換法
2.2.1 連続な確率分布の生成
2.2.2 離散の確率分布の生成
2.2.3 近似累積分布関数による乱数生成
2.3 変数変換法
2.3.1 ガンマ,ベータ分布の生成
2.3.2 正規分布と関連した分布の生成
2.4 棄却法
第3章 積分法
3.1 数値積分法
3.2 基本的モンテカルロ積分法
3.2.1 基本的モンテカルロ積分法
3.2.2 誤差評価
3.3 自己正規化モンテカルロ積分法
3.4 重点サンプリング法
3.4.1 重点サンプリング法の構成
3.4.2 重点サンプリング法の最適性
第4章 マルコフ連鎖
4.1 ライト・フィッシャーモデル
4.2 自己回帰過程
4.3 マルコフ連鎖
4.3.1 マルコフカーネル
4.3.2 マルコフ連鎖の同時分布
4.3.3 マルコフカーネルの作用
4.4 不変性と特異性
4.4.1 不変性
4.4.2 特異性
4.5 エルゴード性とマルコフ連鎖モンテカルロ法
第5章 ギブスサンプリング
5.1 有限混合モデル
5.2 プロビット回帰モデル
5.3 二変量ギブスサンプリング
5.3.1 二変量ギブスサンプリング
5.3.2 二変量ギブスサンプリングの性質
5.3.3 ベイズ統計学における二変量ギブスサンプリング
5.4 多変量ギブスサンプリング
第6章 メトロポリス・ヘイスティングス法
6.1 メトロポリス・ヘイスティングス法
6.2 独立型メトロポリス・ヘイスティングス法
6.3 ランダムウォーク型メトロポリス法
6.3.1 ランダムウォーク型メトロポリス法の性質
6.3.2 調整パラメータの選択
6.4 ロジスティック回帰モデル
6.5 ハミルトニアン・モンテカルロ法
関連シリーズ
-
Pythonではじめる時系列分析入門
-
プログラミング〈新〉作法
-
Polarsとpandasで学ぶ データ処理アイデアレシピ55
-
RustによるWebアプリケーション開発
-
ゼロから学ぶGit/GitHub
-
Pythonでスラスラわかる ベイズ推論「超」入門
-
最新 使える!MATLAB
-
ゼロから学ぶRust
-
OpenCVによる画像処理入門
-
ROS2とPythonで作って学ぶAIロボット入門
-
Pythonではじめるベイズ機械学習入門
-
これからのロボットプログラミング入門
-
Rではじめる地理空間データの統計解析入門
-
Pythonではじめるテキストアナリティクス入門
-
1週間で学べる!Julia数値計算プログラミング
-
スパース回帰分析とパターン認識
-
ゼロから学ぶPythonプログラミング
-
PythonではじめるKaggleスタートブック
-
Python数値計算プログラミング
-
Kaggleに挑む深層学習プログラミングの極意
-
データ分析のためのデータ可視化入門
-
最適化手法入門
-
RとStanではじめる ベイズ統計モデリングによるデータ分析入門
-
Juliaプログラミング大全
-
Rで学ぶ統計的データ解析
-
Pythonで学ぶアルゴリズムとデータ構造
-
ゼロからつくるPython機械学習プログラミング入門
-
入門者のPython
-
Web学習アプリ対応 C言語入門
-
ゼロからはじめるデータサイエンス入門
-
ProcessingによるCGとメディアアート
-
問題解決力を鍛える!アルゴリズムとデータ構造
-
ソフトウェアの挑戦
-
ホログラフィ入門
-
今日から使える! MATLAB 数値計算から古典制御まで
-
IDLプログラミング入門―基本概念から3次元グラフィックス
-
LabVIEW画像計測入門
-
使える! MATLAB/Simulinkプログラミング
-
OpenCVによるコンピュータビジョン・機械学習入門
-
GPUプログラミング入門 -CUDA5による実装
-
pixivエンジニアが教えるプログラミング入門