スパース回帰分析とパターン認識
- 電子あり
内容紹介
目次
1章 回帰モデルとスパース推定
1.1 回帰モデルと正則化法
1.2 ラッソとその性質
1.3 高次元データに対するラッソ推定量の非漸近的性質
1.4 ラッソ型の正則化法
1.5 モデル選択
1.6 補足
2章 統計手法によるパターン認識
2.1 判別分析の実例
2.2 ベイズ判別法と誤判別確率
2.3 2群の場合の多次元正規分布によるベイズ判別ルール
2.4 多群の場合のベイズ判別法
2.5 ロジスティック判別
2.6 その他の判別方法
3章 深層学習
3.1 深層ニューラルネットワーク
3.2 効率よくパラメータを推定するためのテクニック
3.3 畳み込みニューラルネットワーク
3.4 生成モデル
4章 機械学習によるパターン認識
4.1 サポートベクターマシン
4.2 ランダムフォレスト
4.3 アダブースト
関連シリーズ
-
Pythonではじめる時系列分析入門
-
プログラミング〈新〉作法
-
Polarsとpandasで学ぶ データ処理アイデアレシピ55
-
RustによるWebアプリケーション開発
-
ゼロから学ぶGit/GitHub
-
Pythonでスラスラわかる ベイズ推論「超」入門
-
最新 使える!MATLAB
-
ゼロから学ぶRust
-
OpenCVによる画像処理入門
-
ROS2とPythonで作って学ぶAIロボット入門
-
Pythonではじめるベイズ機械学習入門
-
これからのロボットプログラミング入門
-
Rではじめる地理空間データの統計解析入門
-
Pythonではじめるテキストアナリティクス入門
-
1週間で学べる!Julia数値計算プログラミング
-
モンテカルロ統計計算
-
ゼロから学ぶPythonプログラミング
-
PythonではじめるKaggleスタートブック
-
Python数値計算プログラミング
-
Kaggleに挑む深層学習プログラミングの極意
-
データ分析のためのデータ可視化入門
-
最適化手法入門
-
RとStanではじめる ベイズ統計モデリングによるデータ分析入門
-
Juliaプログラミング大全
-
Rで学ぶ統計的データ解析
-
Pythonで学ぶアルゴリズムとデータ構造
-
ゼロからつくるPython機械学習プログラミング入門
-
入門者のPython
-
Web学習アプリ対応 C言語入門
-
ゼロからはじめるデータサイエンス入門
-
ProcessingによるCGとメディアアート
-
問題解決力を鍛える!アルゴリズムとデータ構造
-
ソフトウェアの挑戦
-
ホログラフィ入門
-
今日から使える! MATLAB 数値計算から古典制御まで
-
IDLプログラミング入門―基本概念から3次元グラフィックス
-
LabVIEW画像計測入門
-
使える! MATLAB/Simulinkプログラミング
-
OpenCVによるコンピュータビジョン・機械学習入門
-
GPUプログラミング入門 -CUDA5による実装
-
pixivエンジニアが教えるプログラミング入門