Kaggleに挑む深層学習プログラミングの極意
- 電子あり
内容紹介
目次
第1章 機械学習コンテストの基礎知識
1.1 機械学習コンテストのおおまかな流れ
1.2 機械学習コンテストの歴史
1.3 機械学習コンテストの例
1.4 計算資源
第2章 探索的データ分析とモデルの作成・検証・性能向上
2.1 探索的データ分析
2.2 モデルの作成
2.3 モデルの検証
2.4 性能の向上
第3章 画像分類入門
3.1 畳み込みニューラルネットワークの基礎
3.2 コンテスト「Dogs vs. Cats Redux」の紹介
3.3 最初の学習:CNNアーキテクチャ
3.4 最初の学習:データの準備と学習ループ
3.5 最適化アルゴリズムと学習率スケジューリング
3.6 データ拡張
3.7 アンサンブル
3.8 さらにスコアを伸ばすために
第4章 画像検索入門
4.1 画像検索タスク
4.2 学習済みモデルを使ったベースライン手法
4.3 ベースラインを実装する
4.4 距離学習を学ぶ
4.5 画像マッチングによる検証
4.6 クエリ拡張を学ぶ
4.7 Kaggleコンテストでの実践
第5章 テキスト分類入門
5.1 Quora Question Pairs
5.2 特徴量ベースのモデル
5.3 ニューラルネットワークベースのモデル
関連シリーズ
-
Pythonではじめる時系列分析入門
-
プログラミング〈新〉作法
-
Polarsとpandasで学ぶ データ処理アイデアレシピ55
-
RustによるWebアプリケーション開発
-
ゼロから学ぶGit/GitHub
-
Pythonでスラスラわかる ベイズ推論「超」入門
-
最新 使える!MATLAB
-
ゼロから学ぶRust
-
OpenCVによる画像処理入門
-
ROS2とPythonで作って学ぶAIロボット入門
-
Pythonではじめるベイズ機械学習入門
-
これからのロボットプログラミング入門
-
Rではじめる地理空間データの統計解析入門
-
Pythonではじめるテキストアナリティクス入門
-
1週間で学べる!Julia数値計算プログラミング
-
モンテカルロ統計計算
-
スパース回帰分析とパターン認識
-
ゼロから学ぶPythonプログラミング
-
PythonではじめるKaggleスタートブック
-
Python数値計算プログラミング
-
データ分析のためのデータ可視化入門
-
最適化手法入門
-
RとStanではじめる ベイズ統計モデリングによるデータ分析入門
-
Juliaプログラミング大全
-
Rで学ぶ統計的データ解析
-
Pythonで学ぶアルゴリズムとデータ構造
-
ゼロからつくるPython機械学習プログラミング入門
-
入門者のPython
-
Web学習アプリ対応 C言語入門
-
ゼロからはじめるデータサイエンス入門
-
ProcessingによるCGとメディアアート
-
問題解決力を鍛える!アルゴリズムとデータ構造
-
ソフトウェアの挑戦
-
ホログラフィ入門
-
今日から使える! MATLAB 数値計算から古典制御まで
-
IDLプログラミング入門―基本概念から3次元グラフィックス
-
LabVIEW画像計測入門
-
使える! MATLAB/Simulinkプログラミング
-
OpenCVによるコンピュータビジョン・機械学習入門
-
GPUプログラミング入門 -CUDA5による実装
-
pixivエンジニアが教えるプログラミング入門