Rで学ぶ統計的データ解析
- 電子あり
内容紹介
目次
第1章 準備:Rの操作
1.1 はじめに
1.2 Rの基本
1.3 オブジェクトの種類と操作・演算
1.4 真偽の判定(比較演算子・論理演算子)
1.5 データの読み込み
1.6 パッケージのインストール・読み込み
1.7 Rを使いこなすためのヒント
第2章 データの可視化と要約
2.1 変数の種類
2.2 1変数の可視化・要約
2.3 2変数の可視化・要約
2.4 補足
第3章 回帰分析(1)
3.1 単回帰モデル
3.2 重回帰モデル
3.3 補足
第4章 回帰分析(2)
4.1 回帰モデルの統計的推測
4.2 回帰分析の工夫
4.3 正則化法に基づく回帰分析
4.4 補足
第5章 判別分析
5.1 フィッシャーの線形判別分析:2群の場合
5.2 線形判別分析の実行
5.3 線形判別分析の結果を評価する
5.4 線形判別分析:数理編
5.5 フィッシャーの線形判別分析:3群以上の場合
5.6 線形判別分析(3群以上の場合):数理編
第6章 ロジスティック回帰モデル
6.1 ロジスティック回帰モデル
6.2 被説明変数が3群以上の場合
第7章 単純な規則に基づく判別モデル
7.1 決定木に基づくモデル
7.2 インデックスモデル
第8章 主成分分析
8.1 主成分分析の基本的な考え方
8.2 主成分分析の実行(1)
8.3 主成分分析の実行(2)
8.4 主成分分析:数理編
第9章 クラスター分析
9.1 クラスター分析とは
9.2 非階層的クラスター分析:k平均法
9.3 階層的クラスター分析
9.4 クラスターの数を決める方法
第10章 ブートストラップ法
10.1 ブートストラップ法の基本的な考え方
10.2 ブートストラップ法の実行:基本編
10.3 ブートストラップ法の実行:応用編
第11章 Rを用いたシミュレーション:数理統計学を「実感」する
11.1 シミュレーションとは
11.2 シミュレーションの例
関連シリーズ
-
Pythonではじめる時系列分析入門
-
プログラミング〈新〉作法
-
Polarsとpandasで学ぶ データ処理アイデアレシピ55
-
RustによるWebアプリケーション開発
-
ゼロから学ぶGit/GitHub
-
Pythonでスラスラわかる ベイズ推論「超」入門
-
最新 使える!MATLAB
-
ゼロから学ぶRust
-
OpenCVによる画像処理入門
-
ROS2とPythonで作って学ぶAIロボット入門
-
Pythonではじめるベイズ機械学習入門
-
これからのロボットプログラミング入門
-
Rではじめる地理空間データの統計解析入門
-
Pythonではじめるテキストアナリティクス入門
-
1週間で学べる!Julia数値計算プログラミング
-
モンテカルロ統計計算
-
スパース回帰分析とパターン認識
-
ゼロから学ぶPythonプログラミング
-
PythonではじめるKaggleスタートブック
-
Python数値計算プログラミング
-
Kaggleに挑む深層学習プログラミングの極意
-
データ分析のためのデータ可視化入門
-
最適化手法入門
-
RとStanではじめる ベイズ統計モデリングによるデータ分析入門
-
Juliaプログラミング大全
-
Pythonで学ぶアルゴリズムとデータ構造
-
ゼロからつくるPython機械学習プログラミング入門
-
入門者のPython
-
Web学習アプリ対応 C言語入門
-
ゼロからはじめるデータサイエンス入門
-
ProcessingによるCGとメディアアート
-
問題解決力を鍛える!アルゴリズムとデータ構造
-
ソフトウェアの挑戦
-
ホログラフィ入門
-
今日から使える! MATLAB 数値計算から古典制御まで
-
IDLプログラミング入門―基本概念から3次元グラフィックス
-
LabVIEW画像計測入門
-
使える! MATLAB/Simulinkプログラミング
-
OpenCVによるコンピュータビジョン・機械学習入門
-
GPUプログラミング入門 -CUDA5による実装
-
pixivエンジニアが教えるプログラミング入門