転移学習

テンイガクシュウ
  • 電子あり
転移学習
自分メモ
気になった本やコミックの情報を自分に送れます

内容紹介

+ もっとみる

目次

第1部 転移学習への導入

第1章 機械学習から転移学習へ
1.1 人工知能,機械学習,そして転移学習
1.2 統計的機械学習の基礎
1.3 深層学習の基礎
1.4 転移学習への導入と定義

第2章 転移学習の基本概念
2.1 転移学習における基本問題
2.2 いつ転移するか
2.3 何を転移するか
2.4 ドメイン適応問題の分類

第2部 転移学習の基礎

第3章 ドメイン適応の理論
3.1 期待リスクの上界評価
3.2 期待リスクの下界評価

第4章 データに基づくドメイン適応の基礎
4.1 データに基づくドメイン適応の概要
4.2 事例ベースのドメイン適応
4.3 特徴ベースのドメイン適応
4.4 深層表現学習に基づく特徴ベースのドメイン適応
4.5 不変性に基づく教師なしドメイン適応の限界
4.6 まとめ

第5章 データに基づくドメイン適応の展開
5.1 ドメイン適応におけるモデル選択
5.2 半教師ありドメイン適応
5.3 能動的ドメイン適応

第6章 事前学習済みモデル
6.1 辞書学習に基づくドメイン適応
6.2 事前学習済みニューラルネットワークに基づくドメイン適応

第3部 転移学習の展開

第7章 知識蒸留
7.1 知識蒸留の定式化
7.2 蒸留における知識
7.3 知識蒸留の学習スキーム

第8章 マルチタスク学習
8.1 マルチタスク学習の導入
8.2 マルチタスク学習のアルゴリズム
8.3 マルチタスク学習の展望

第9章 メタ学習
9.1 機械学習における帰納バイアスとその学習
9.2 統計的メタ学習の定式化
9.3 メタ学習の分類と方法
9.4 まとめ

第10章 少数ショット学習
10.1 少数ショット学習の問題設定
10.2 少数ショット学習の方法の分類
10.3 データの変換に基づく少数ショット学習
10.4 仮説集合への工夫に基づく少数ショット学習

第11章 ドメイン汎化
11.1 ドメイン汎化の導入
11.2 ドメイン汎化のアルゴリズム
11.3 ドメイン汎化の展望

第12章 継続学習
12.1 継続学習の導入
12.2 継続学習のアルゴリズム
12.3 継続学習の各手法の比較
12.4 継続学習の展望

第13章 強化学習における転移学習
13.1 強化学習の方法
13.2 強化学習における転移学習の基本的な考え方
13.3 強化学習における転移学習の方法
13.4 まとめ

本書のまとめ

付録A 深層ニューラルネットワークと生成モデルの基礎
A.1 さまざまな深層ニューラルネットワークモデル
A.2 生成モデル

製品情報

製品名 転移学習
著者名 著:松井 孝太 著:熊谷 亘
発売日 2024年04月11日
価格 定価:3,740円(本体3,400円)
ISBN 978-4-06-533293-1
判型 A5
ページ数 416ページ
シリーズ 機械学習プロフェッショナルシリーズ

著者紹介

著:松井 孝太(マツイ コウタ)

名古屋大学大学院医学系研究科 講師
株式会社KDDI総合研究所 招聘研究員

著:熊谷 亘(クマガイ ワタル)

東京大学大学院工学系研究科技術経営戦略学専攻 特任助教

オンライン書店で見る