ベイズ深層学習
- 電子あり

内容紹介
おすすめの本
-
電子あり
つながる脳科学 「心のしくみ」に迫る脳研究の最前線
-
電子あり
例と演習で学ぶ 確率論
-
電子あり
夢を叶えるために脳はある 「私という現象」、高校生と脳を語り尽くす
-
電子あり
クオリアと人工意識
-
電子あり
無双航路 1 転生して宇宙戦艦のAIになりました
-
電子あり
父が子に語る科学の話 親子の対話から生まれた感動の科学入門
-
電子あり
脳・心・人工知能 数理で脳を解き明かす
-
イノベーターズ2 天才、ハッカー、ギークがおりなすデジタル革命史
-
電子あり
AI時代の労働の哲学
-
電子あり
わかりやすい薬学系の数学・統計学演習
-
電子あり
暗号の理論と技術 量子時代のセキュリティ理解のために
-
電子あり
心はこうして創られる 「即興する脳」の心理学
目次
第1章 はじめに
1.1 ベイズ統計とニューラルネットワークの変遷
1.2 ベイズ深層学習
第2章 ニューラルネットワークの基礎
2.1 線形回帰モデル
2.2 ニューラルネットワーク
2.3 効率的な学習法
2.4 ニューラルネットワークの拡張モデル
第3章 ベイズ推論の基礎
3.1 確率推論
3.2 指数型分布族
3.3 ベイズ線形回帰
3.4 最尤推定,MAP推定との関係
第4章 近似ベイズ推論
4.1 サンプリングに基づく推論手法
4.2 最適化に基づく推論手法
第5章 ニューラルネットワークのベイズ推論
5.1 ベイズニューラルネットワークモデルの近似推論法
5.2 近似ベイズ推論の効率化
5.3 ベイズ推論と確率的正則化
5.4 不確実性の推定を使った応用
第6章 深層生成モデル
6.1 変分自己符号化器
6.2 変分モデル
6.3 生成ネットワークの構造学習
6.4 その他の深層生成モデル
第7章 深層学習とガウス過程
7.1 ガウス過程の基礎
7.2 ガウス過程による分類
7.3 ガウス過程のスパース近似
7.4 深層学習のガウス過程解釈
7.5 ガウス過程による生成モデル
製品情報
製品名 | ベイズ深層学習 |
---|---|
著者名 | 著:須山 敦志 |
発売日 | 2019年08月08日 |
価格 | 定価:3,300円(本体3,000円) |
ISBN | 978-4-06-516870-7 |
判型 | A5 |
ページ数 | 312ページ |
シリーズ | 機械学習プロフェッショナルシリーズ |
関連シリーズ
-
応用基礎としてのデータサイエンス
-
コンピュータとネットワーク
-
イラストで学ぶ ヒューマンインタフェース
-
教養としてのデータサイエンス
-
ことばの意味を計算するしくみ
-
データサイエンスはじめの一歩
-
転移学習
-
アジャイルデータモデリング
-
詳解 3次元点群処理
-
入門講義 量子コンピュータ
-
現場で活用するための機械学習エンジニアリング
-
Juliaで作って学ぶベイズ統計学
-
はじめての機械学習
-
ディープラーニング 学習する機械
-
これならわかる機械学習入門
-
Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析
-
絵でわかるネットワーク
-
絵でわかるサイバーセキュリティ
-
Pythonで学ぶ強化学習
-
統計モデルと推測
-
スタンフォード ベクトル・行列からはじめる最適化数学
-
データサイエンスの基礎
-
イラストで学ぶディープラーニング
-
テキスト・画像・音声データ分析
-
データサイエンスのためのデータベース
-
コンパクトデータ構造
-
しっかり学ぶ数理最適化
-
Raspberry Piではじめる機械学習
-
マスターアルゴリズム 世界を再構築する「究極の機械学習」
-
今度こそわかる量子コンピューター
-
絵でわかるスーパーコンピュータ
-
ベイズ推論による機械学習入門
-
これならわかる深層学習入門
-
情報メディア論
-
イラストで学ぶ 音声認識
-
イラストで学ぶ 機械学習 最小二乗法による識別モデル学習