機械学習スタートアップシリーズ ベイズ推論による機械学習入門
キカイガクシュウスタートアップシリーズベイズスイロンニヨルキカイガクシュウニュウモン
- 電子あり
内容紹介
+ もっとみる
目次
- 第1章 機械学習とベイズ学習
- 機械学習とは/機械学習の代表的なタスク/機械学習の 2 つのアプローチ/確率の基本計算/グラフィカルモデル/ベイズ学習のアプローチ
- 第2章 基本的な確率分布
- 期待値/離散確率分布/連続確率分布
- 第3章 ベイズ推論による学習と予測
- 学習と予測/離散確率分布の学習と予測/1次元ガウス分布の学習と予測/多次元ガウス分布の学習と予測/線形回帰の例
- 第4章 混合モデルと近似推論
- 混合モデルと事後分布の推論/確率分布の近似手法/ポアソン混合モデルにおける推論/ガウス混合モデルにおける推論
- 第5章 応用モデルの構築と推論
- 線形次元削減/非負値行列因子分解/隠れマルコフモデル/トピックモデル/テンソル分解/ロジスティック回帰/ニューラルネットワーク
関連シリーズ
-
イラストで学ぶ ヒューマンインタフェース
-
教養としてのデータサイエンス
-
ことばの意味を計算するしくみ
-
データサイエンスはじめの一歩
-
転移学習
-
応用基礎としてのデータサイエンス
-
詳解 3次元点群処理
-
入門講義 量子コンピュータ
-
現場で活用するための機械学習エンジニアリング
-
Juliaで作って学ぶベイズ統計学
-
はじめての機械学習
-
ディープラーニング 学習する機械
-
これならわかる機械学習入門
-
Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析
-
絵でわかるネットワーク
-
絵でわかるサイバーセキュリティ
-
Pythonで学ぶ強化学習
-
統計モデルと推測
-
スタンフォード ベクトル・行列からはじめる最適化数学
-
データサイエンスの基礎
-
イラストで学ぶディープラーニング
-
テキスト・画像・音声データ分析
-
データサイエンスのためのデータベース
-
ベイズ深層学習
-
コンパクトデータ構造
-
しっかり学ぶ数理最適化
-
Raspberry Piではじめる機械学習
-
マスターアルゴリズム 世界を再構築する「究極の機械学習」
-
今度こそわかる量子コンピューター
-
絵でわかるスーパーコンピュータ
-
これならわかる深層学習入門
-
情報メディア論
-
イラストで学ぶ 音声認識
-
イラストで学ぶ 機械学習 最小二乗法による識別モデル学習